The Number of Monotone and Self-Dual Boolean Functions
نویسندگان
چکیده
منابع مشابه
On the Fractional Chromatic Number of Monotone Self-dual Boolean Functions
We compute the exact fractional chromatic number for several classes of monotone self-dual Boolean functions. We characterize monotone self-dual Boolean functions in terms of the optimal value of a LP relaxation of a suitable strengthening of the standard IP formulation for the chromatic number. We also show that determining the self-duality of monotone Boolean function is equivalent to determi...
متن کاملPartial Clones Containing all Boolean Monotone Self-dual Partial Functions
The study of partial clones on 2 := {0, 1} was initiated by R. V. Freivald. In his fundamental paper published in 1966, Freivald showed, among other things, that the set of all monotone partial functions and the set of all self-dual partial functions are both maximal partial clones on 2. Several papers dealing with intersections of maximal partial clones on 2 have appeared after Freivald work. ...
متن کاملLocally monotone Boolean and pseudo-Boolean functions
We propose local versions of monotonicity for Boolean and pseudoBoolean functions: say that a pseudo-Boolean (Boolean) function is p-locally monotone if none of its partial derivatives changes in sign on tuples which differ in less than p positions. As it turns out, this parameterized notion provides a hierarchy of monotonicities for pseudo-Boolean (Boolean) functions. Local monotonicities are ...
متن کاملInfluences of monotone Boolean functions
Recently, Keller and Pilpel conjectured that the influence of a monotone Boolean function does not decrease if we apply to it an invertible linear transformation. Our aim in this short note is to prove this conjecture.
متن کاملCeilings of Monotone Boolean Functions
This paper considers a particular relationship defined over pairs of n-argument monotone Boolean functions. The relationship is of interest since we can show that if ( g, h ) satisfy it then for any n-argument monotone Boolean function f there is a close relationship between the combinational and monotone network complexities of the function (f /\ g) \/ h. We characterise the class of pairs of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics, Statistics and Informatics
سال: 2014
ISSN: 1336-9180
DOI: 10.2478/jamsi-2014-0016